
04
land

RAPID COMMUNICATIONS

PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Controlling Hamiltonian chaos via Gaussian curvature
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We present a method allowing one to partly stabilize some chaotic Hamiltonians which have two degrees of
freedom. The purpose of the method is to avoid the regions ofV(q1 ,q2) where its Gaussian curvature becomes
negative. We show the stabilization of the He´non-Heiles system, over a wide area, for the critical energy
E5

1
6 . Total energy of the system varies only by a few percent.@S1063-651X~99!50512-6#

PACS number~s!: 05.45.2a
t
ll
hi
be
re
n
ao
th
t

ne
m
ge
ion

s o
es
on
lis
a
e
no

th
ab

l
ne
tie

m
m

th

th
an
-
tiv

o
e
o

im
of

ure
ch,

of
part
0%

ace

he
e

ni-
c.
the
-

ture
n

een
the

has

ual
se

e
os.

m

To control chaos in nonlinear dynamical systems, O
Grebogi, and Yorke~OGY! @1# proposed to apply a sma
perturbation to stabilize an unstable periodic orbit. T
method was developed for dissipative systems and has
succesfully applied in a variety of cases. Lai, Ding, and G
bogi ~LDG! @2# extended the OGY method to Hamiltonia
chaos. But in the Hamiltonian systems, the control of ch
is more difficult because there are no attractors and
search for chaotic behavior stretches to large areas of
phase space. In the scientific and engineering discipli
dissipative systems are more commonly used than Ha
tonian systems. The latter occur in the physics of char
particules~such as plasma fusion, laser-plasma interact
free electron laser, or particle accelerators!, in astronomy
~planetary motion!, and in atomic physics~motion of atoms
in molecules and crystals to describe molecular vibration
molecular reactions, or motion of electrons in molecul!
@3,4#. To avoid the appearance of chaotic behavior in a c
servative system, the classical method consists of estab
ing a map of chaotic and regular regions in phase space
then choosing initial conditions in a regular area. Howev
this method presents a major disadvantage: for a certain
linear parameter value of the Hamiltonian, chaos becom
general and the regular areas disappear. The LDG me
can be used in the chaotic region but only along one unst
periodic orbit, after an extremely long chaotic transient@2#.
In another approach, Wuet al. @5# proposed to contro
Hamiltonian chaos of a periodically driven system with o
degree of freedom, by an external field, but large intensi
were required~from 40 to 60 % of the original driving force!.

Our goal is to present a stabilization method for so
chaotic Hamiltonians which have two degrees of freedo
With this aim, we consider the Gaussian curvature of
potential energy surface,V(q1 ,q2), of the system as one
source of chaos. In this article, we study the behavior of
Hamiltonian system following a change of the Hamiltoni
to avoid the regions ofV(q1 ,q2) where its Gaussian curva
ture becomes negative. We call this avoidance of nega
curvature regions of the potential energy~ANCRP!. Two
ways to do this are~i! to omit, from the Hamiltonian, the
terms causing the negativity of the Gaussian curvature
regions ofV(q1 ,q2) where the curvature becomes negativ
and~ii ! to change the periodicity of periodic Hamiltonian s
that it is restricted to regions ofV(q1 ,q2) with a positive
curvature. The first method is used for the He´non-Heiles sys-
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tem and the second for the sinusoidal Hamiltonian. Our a
is not only to avoid the negative curvature regions
V(q1 ,q2), but more generally, to separate positive curvat
regions from negative curvature regions. By this approa
we expect to stabilize the system~i.e., to obtain regular or-
bits! when the chaos is general and fills the quasitotality
the phase space. This method should operate in a large
of the phase space with an average energy variation of 1
or less.

The Gaussian curvature ofV(q1 ,q2), must not be con-
fused with the curvature of trajectories of the phase sp
translated as geodesics on a Jacobi@6#, Eisenhart@6,7# or
Finsler @8# manifold. There is no connection between t
curvature ofV(q1 ,q2), and the curvature of geodesics in th
phase space. For example, in the case of the He´non-Heiles
Hamiltonian, the Gaussian curvature ofV(q1 ,q2), can be
positive or negative, while the curvature of the Jacobi ma
fold is always positive@7# even when the system is chaoti
The sign of curvature on a Jacobi manifold is related to
sign of Laplacian ofV(q1 ,q2), and not to the sign of Gauss
ian curvature ofV(q1 ,q2). The chaotic behavior of Hamil-
tonian flows~viewed as geodesic flows in a manifold! can
result from negative curvature on the Jacobi manifold@9# or
from parametric resonance of geodesics due to curva
fluctuation@6#. The Finsler geometric indicator of chaos ca
discriminate between chaotic and regular orbits, i.e., betw
chaotic and regular regions of the phase space. For
Hénon-Heiles Hamiltonian, one-to-one correspondence
been demonstrated between Finsler geometry and chaos@10#.
This method gives results already obtained with the us
tools ~distribution of chaotic and regular regions in the pha
space! and is not useful as a stabilization tool.

We study the He´non-Heiles Hamiltonian because it is th
paradigmatic model in the study of the Hamiltonian cha
Moreover, one finds it in various applications~astronomy,
accelerator physics, atomic physics, etc.! @4#. The Hénon-
Heiles model is a Hamiltonian with two degrees of freedo
and quadratic positive kinetic energy@11#. The system is
conservative. Therefore,

H~q1 ,q2 ,p1 ,p2!5E, ~1!

with

E5T~p1 ,p2!1V~q1 ,q2!, ~2!
R6279 © 1999 The American Physical Society
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where

T~p1 ,p2!5
1

2
~p1

21p2
2! ~3!

and

V~q1 ,q2!5
1

2
~q1

21q2
2!1q1

2q22
1

3
q2

3 . ~4!

The nonlinear parameterE is the total energy of the system
which drives chaos. WhenE5 1

12 , there are only a few cha
otic orbits, forE5 1

8 approximately half of the Poincare´ sec-
tion is filled with chaotic regions, and finally forE5 1

6 the
chaos is general and has invaded the quasitotality of ph
space.

The Gaussian curvatureK @12# of the potential of this
Hamiltonian whose kinetic energy has a quadratic form,
be written as

K~q1 ,q2!5
124q1

224q2
2

@11~q112q1q2!21~q1
21q22q2

2!2#2
, ~5!

which is positive inside a circle of equationq1
21q2

25 1
4 .

The Gaussian curvatureK depends only on the space c
ordinates. In addition, negative curvature regions form co
pact blocks. The application of the stabilization method
therefore facilitated.

The Poincare´ section shows chaotic areas for total ener
E5 1

8 , with large regular islets@Fig. 1~a!#. In this situation,
the classic stabilization method would be to choose the in
conditions in an islet or to ‘‘push’’ the orbit to an islet by a
external energy contribution.

As the value of energy increases, the islets gradually
appear. Thus, forE5 1

6 with the same initial conditions a
those in Fig. 1~a!, stable islets disappear and make way fo
chaotic sea@Fig. 1~b!#.

The ANCRP technique becomes a cutoff to the front
between negative curvature areas and positive curva
ones,

H~q1 ,q2 ,p1 ,p2!5
1

2
~p1

21p2
2!1

1

2
~q1

21q2
2!1q1

2q22
1

3
q2

3

~6!

if q1
21q2

2, 1
4 , and

H~q1 ,q2 ,p1 ,p2!5
1

2
~p1

21p2
2!1

1

2
~q1

21q2
2! ~7!

if q1
21q2

2. 1
4 .

This cutoff condition is very simple. It introduces a di
continuity and then a shock on the circleq1

21q2
25 1

4 . Figure
1~c! shows the Poincare´ section forE5 1

6 with the cutoff
condition applied. Unlike Fig. 1~b!, Fig. 1~c! demonstrates
se
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for the same initial conditions regular orbits, which is ev
dence of a quasidisappearance of chaos and a stabilizatio
phase space.

The condition of negative curvature region cutoff has n

FIG. 1. Poincare´ section of He´non-Heiles Hamiltonian for~a!
E5

1
8 ~regular!, ~b! E5

1
6 ~complete chaos!, and ~c! E5

1
6 , with

cutoff stabilization method. Initial conditions:q150 andq250.
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rendered the Hamiltonian integrable. The attenuation or
disappearance of chaos results from a stabilization of or
in the phase space.

What will happen if one moves the limit of the cuto

FIG. 2. Poincare´ section of sinusoidal Hamiltonian for~a! s
50.5 ~regular!, ~b! s51.5 ~complete chaos!, and~c! s51.5 with the
stabilization method. Initial conditions are identical in the thr
cases.
e
ts

condition? Theoretically, by retreating the limit of the cuto
a certain number of orbits have to become chaotic beca
they are submitted again to negative curvature regions.
the contrary, by decreasing the radius of the circle, con
tions of shock are less violent because near the center
Hénon-Heiles potential is close to a quadratic potential. T
regular regions must increase in size at the expense of
noise regions. By advancing or by retreating the limit of t
cutoff, we observe, as planned, in one case the increase i
size of the three stable regions, and in another case the r
pearance of chaos on the stable region edge.

As previously stated, the cutoff condition introduces
shock on the circleq1

21q2
25 1

4 . As has been shown by Sina
@13# in the case of the circular pool, repeated shocks o
circular edge are a source of chaos. So theoretically, the
off condition would have to introduce more chaos in t
system. In fact it is the other way around and Poincare´ sec-
tion for the cutoff condition@Fig. 1~c!# shows the stabiliza-
tion of the system with some appearance of noise. The
off condition has little effect on the total energy of th
system, i.e., the average energy variation of the system i
the order of a few percent, depending on each orbit. T
efficiency of this method, is not the result of an artifici
diminution of the total energy.

We applied the ANCRP technique to other Hamiltonian
significant for their applications,

H5
1

2
p1

22S s

4D 2

@cosq11cos~q12t !# ~8!

and the quartic oscillator Hamiltonian

H5
1

2
~p1

21p2
2!1

1

2
~q1

41q2
4!1

a

2
q1

2q2
2 . ~9!

The first Hamiltonian is time dependent but can be redu
to a 1.5 degree of freedom Hamiltonian system@14#. Specifi-
cally, let

V52S s

4D 2

@cosq11cos~q12q2!#, ~10!

wheret becomes the second coordinate axis of the poten
This potential is a periodic function with a period 2p for q2
and 2p for q1. When the nonlinear parameter,s.0.68, large
scale chaos appears in phase space. The Gaussian curv
of this potential
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K5
256a4 cosq1 cos~q12q2!

@2561a4 sin2q112a4 sinq1 sin~q12q2!12a4 sin2~q12q2!#2
~11!
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is periodic forq1 andq2 with a period 2p.
To avoid negative Gaussian curvature of this potent

which fills 50% of the potential surface, we impose a pe
odicity of p to the dynamics. To put this into practice, w
choose one positive curvature region of the potential@includ-
ing the point~0,0!#, then we impose on the edges the follow
ing closing conditions:

~i! If q1.
p

2
, q15q12p; q25q22p,

~ii ! If q1,2
p

2
, q15q11p; q25q21p,

~iii ! If q2.q11
p

2
, q25q22p,

~iv! If q2,q12
p

2
, q25q21p.

These few conditions define a region of the potential w
a positive Gaussian curvature. It is then possible to study
effect of the ANCRP technique. Fors51.5, phase-space i
widely chaotic@Fig. 2~b!#. For the same initial conditions
the Hamiltonian with ANCRP technique, is stable@Fig. 2~c!#.
We find again, as in the case of the He´non-Heiles Hamil-
tonian, another success for the ANCRP technique.

The third Hamiltonian defined by Eq.~9!, is almost com-
pletely chaotic fora512. Gaussian curvature of the potent
energy is

K5
36q1

2q2
223a2q1

2q2
216a~q1

41q2
4!

@11~2q1
31aq1q2

2!21~2q2
31aq2q1

2!2#2
. ~12!

The negative regions broadly fill the potential surface w
the shape of a four-leaved clover. It is not possible in t
n-
l,
-

e

l

s

case to divide the surface of the potential between posi
and negative regions, because it generates 16 shocks
large number of trajectories at each period. Morever,
condition a50 for the negative curvature regions~i.e., the
use of a cutoff-like ANCRP technique, as with the He´non-
Heiles Hamiltonian! involves a very important variation o
the energy of the system. Still, the quartic oscillator show
strong correlation between chaos and Gaussian curvatu
the potential:~i! the last stable trajectories are the ones wh
avoid the negative curvature regions, and~ii ! large scale
chaos appears in the system fora.6 @15# and we calculate
@from Eq. ~12!# the emergence of the negative curvature
gions precisely fora.6. The same correlation can be foun
for example, for another Hamiltonian of the quartic oscillat
family,

H5
1

2
~p1

21p2
2!13q1

41q2
42aq1

2q2
2 . ~13!

In this case, chaos and negative curvature of the poten
appear both fora.0.

We can conclude that for the three different tw
dimensional Hamiltonian systems, avoidance of nega
curvature of the potential provides more stability. It is we
known since Benettinet al. @16# that some trajectories cross
ing negative curvature regions of the potential remain sta
We show here that Gaussian curvature of the potentia
strongly involved in the emergence of chaos, even if chao
behavior and negative curvature of the potential are
equivalent.
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